
 

Introduction to Binary Exploitation
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Lower level knowledge

● Why do hackers care?
● [source of flashing light]
● [demo of advanced technology]
● Can you turn off the light with complete 

understanding of the software?
● What about with basic understanding of electronics?
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Even lower level knowledge

● There is no software patch against unplugging it
● Electronics “patches”:

– Wireless power
– Integrated battery

● Are there any attacks against a well-designed 
electronics system?
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Today’s target

● We usually focus on getting control of the CPU
● But the CPU only does what the memory tells it 

to do
● Control memory → control CPU → do big hack
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Paged memory

● Linear model
● OS sets up virtual address space for process

– Maps physical RAM addresses to virtual ones
– Hardware transparently handles this; no special userspace code 

required
● Pages are blocks of memory

– Map to some block of physical memory
– Read, Write, eXecute flags
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Source demo

● [nano demo.c]
– Runs the [date] command, which prints the date
– Copies text to new_text
– Prints new_text
– Reads a line into buf
– Prints another predermined string
– Prints text from buf
– Also has the dead function that isn’t called by the code



  7

Compiled demo
● [make demo]

– “the ‘gets’ function is dangerous and should never be used”
– It just reads a line of text, how bad can it be? 

● [readelf -S demo]
– Flags:

● All sections are readable (kinda useless otherwise)
● A: allocated on program load (otherwise just metadata)
● W: writeable
● X: executable

– .text: where machine code goes (NOT TEXT DATA!!!)
– .rodata: read-only data
– .data: read-write data
– .bss: zeroed read-write data (only size given, not contents)
– .symtab and .dynsym: symbols (names and addresses of functions and variables)
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Compiled demo: reading stuff

● [strings demo] gives you strings in demo
● [nm demo] gives you symbols in demo
● [objdump -D demo -M intel] tries to turn everything (data 

or code) into assembler (disassembling), and prints it out
– Using -d instead just targets the executable sections
– [objdump --disassemble=bar] will disassemble only the 

symbol main
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Hack demo

● Program is boring
– Let’s hack it

● [xxd -p hax]
– Bunch of As and some random-looking bytes

● [cat hax - | ./demo]
– Types the contents of hax, then lets us interact as normal
– Prints out weird text
– And it’s is now a shell???
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What?

● What?
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What?

● Strace shows what the program asks the kernel to do 
for it (system calls)
– File I/O
– Start processes
– Other stuff

● [cat hax - | strace ./demo]
– Why is the process asking to be turned into a shell?
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My analogy is definitely really clever and not just an 
excuse to hit things with a hammer

● This is how the programmer feels when the light 
turns off

● Or how the circuit designer feels when you 
whack the PCB with a hammer

● We are missing some lower-level understanding
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Assembly refresher

● jmp: jumps to some point in memory
● call: jumps to some point in memory, can come back with 

ret
● mov: sets some memory or register value
● lea: sets a register to the address of the rhs
● All other instructions are either obvious (add, xor) or 

easily googlable
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Lifetimes

● Memory in modern processes is in 3 groups
– Static: allocated by loader, deallocated by reaper
– Heap: allocated by malloc, deallocated by free
– Stack: allocated by push, deallocated by pop

● What’s the difference?
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Static
● There for the entire life of the program

– Being allocated at the start costs basically no extra time
– The .bss, .rodata and .data sections set this up

● This is where you put your code and global variables
– You don’t want those suddenly disappearing
– You can’t allocate code segments without any code!

● Can’t be allocated/deallocated
– All functions have to agree on what memory is theirs

● Remember the “no mutable global variables” thing?
– Must allocate the maximum you will ever need, which is inefficient
– Technically abuse of mmap can, but that’s another story
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Heap

● The malloc and free functions control this
– Datastructures used to control this can be messed with, but that’s another talk

● This is where you put data of unknown size, or memory that needs only 
needs to exist for some time

● Heap allocation has to go ask the kernel for memory during run time, so 
slow
– Modern heap allocators do clever things to make this faster, but still generally 

quite slow
● We don’t use this in the demo program, so it can’t be the problem
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Stack
● CPU Instructions `push` and `pop` control this
● [board demo]

– Stack grows down (annoyingly)
– Stack frames are placed after return pointer
– FILO

● Keeps track of return pointer
– How ret finds which call to return to

● Also can be used for local variable allocation [demo]
– Very easy cleanup of variables, much faster than malloc

● Putting two very different types of data together
– Hmm, sounds like hax
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Sounds like hax

● [ret2func board demo]
● Gets writes past the end
● Easy in theory, need some tools for real-world
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Finding the offset
● Gdb + gef

– Can do with just base gdb, but effort
– https://github.com/hugsy/gef

● How do we find this offset?
– Trial and error (spam As until segfault and wiggle around a bit)
– Clever maths (debruijn sequence)

● https://github.com/c3-ctf/debruijn/releases/tag/v0.0.1
● [debruijn demo into gdb]

– [debruijn 2 AA]
– ‘r’ starts program
– Typing in our sequence segfaults
– ‘i f’ prints current frame info
– ‘x/s $rsp’ prints the string at the stack pointer
– [debruijn 2 AA IA] gives us the offset 16 (only need n letters)

https://github.com/hugsy/gef
https://github.com/c3-ctf/debruijn/releases/tag/v0.0.1
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Building the payload
● I spent years trying to build payloads using python, JS and even PERL!
● nasm is best tool I’ve found

– Can easily type in addresses, and it handles endianness
– Can handle instructions
– Available on basically anything that can be called a computer

● Non-assembly syntax:
– db: byte, dw: 16-bit int, dd: 32-bit int, dq: 64-bit int
– times <n> <instruction>: repeats <instruction> n times
– [BITS <n>]: tells nasm to assemble for an <n> bit computer
– We’re on amd64, so use [BITS 64] and dq for addresses

● Use nm or cutter to find interesting functions to return to
● Let’s go! [ret2func demo]
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But where’s the shell :(

● We did some cool stuff, but we haven’t loaded a shell yet
● Where else can we return?

– We can “return” to any point in a function!
– We can even “return” outside of a function! (as long as it’s executable)
– gef’s vmmap shows executable segments:
– The stack is readable, writable AND executable!!!

● [nano hax.S]
– Code looks weird, you have to write it to work anywhere
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Leaving the 90s

● This was really cool back in the 90s
● Made the internet unusable

– Haha funny dialup hax
– Worms
– Mostly just random destruction
– Sometimes not just for lulz
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The war begins!

● W^X
– Why the hell can you execute the stack? actually some good reasons

– Stop executing the stack!
● Now we can only crash the program, right?

– I’m giving this talk, so guess the answer...



  24

ROP
● Return Oriented Programming

– “ret” just jumps to the next item on the stack
– Find “gadgets” that do useful things, followed by a “ret”

● pop <register> allows us to set registers!
– Chain them!

● ROPgadget helps find useful things
– Can even build whole ROP chains, but usually overly complicated

● For more advanced binaries, you want cutter 
– Great for reverse engineering and binary patching
– https://github.com/rizinorg/cutter/releases

● [demo rop.S]
– Cutter gives the address of all strings in the binary
– Use the “system” function (ret2libc)

https://github.com/rizinorg/cutter/releases
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The war continues!

● The attacker is using the addresses of important things to 
do bad stuff

● If we randomised those addresses, it would make their lives 
harder!

● This is called Address Space Layout Randomisation (ASLR)
● ASLR is enabled kernel-wide on Linux

– So that’s why we can’t just hard-code a stack address
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There’s a lot more

● This only scratches the surface of what memory 
corruption and binary exploitation can do:
– LD_PRELOAD and linker fun
– Heap attacks (use-after-free, heap smashing)
– Spooky hardware attacks

● There’s also a lot more theory behind this
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Bypassing ASLR
● Statically linked libraries are all in the same section
● Relative addresses in the same section are constant

– If you find one address in a section, you can get them all
● Most programs are not position-independent code

– If you have enough gadgets in the non PIC section, you don’t care about ASLR
– To interface with the PIC parts (such as so/dll files), just jump to the PLT, which will redirect you to the 

main function
● If not enough is in the PLT, or it’s a position-independent executable, then you need to be 

able to read arbitrary bits of RAM
– This means you need 2 vulns instead of one

● Failing all of this, you have to brute force the offset, which is noisy and slow
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Stack cookies

● You’re overwriting the stack
● So check if the stack has been overwritten
● Random number stored in a register, check 

before each ‘ret’
● Extra memory read after each function is slow

– Sometimes only done on “dangerous” functions
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Haha good luck

● You need to either:
– Be able to skip over the stack cookie without overwriting it with ‘A’s
– Read the stack cookie, which requires another vuln
– Brute force the cookie

● 32-bit systems have only 24 non-zero bits of stack cookie, as the first byte 
is 0 to protect against string functions
– Can be reasonable to brute force all 16 million possible values
– Not for 64 bit though!

● Failing this, and assuming you can’t brute force it, you’re basically stuck
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However, not fixed

● Optional security isn’t secure
● Other related exploits that can’t be patched in 

this way
● Old software still in use that isn’t secure
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Bounds checking

● Just bounds check
● It’s really easy
● It’s often a single register comparison, and so has no significant overhead
● #define _GLIBCXX_DEBUG or #define _GLIBCXX_ASSERTIONS

– Slower, but enforces proper bounds checks with C++
● #define FORTIFY_SOURCE 1

– Should basically always be on
● Or use a cringe language like Rust
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CTF challenges & extra resources

● The pwn challenges are of this form
● LiveOverflow on youtube has a great series

– It’s what got me started
– https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUq

wRTjxglIswKp9mpkfPNfHkzyeN
● Message me on Discord
● Ask me a question IRL!
● Just practice a lot :)

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
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