

Introduction to Binary Exploitation

 2

Lower level knowledge

● Why do hackers care?
● [source of flashing light]
● [demo of advanced technology]
● Can you turn off the light with complete

understanding of the software?
● What about with basic understanding of electronics?

 3

Even lower level knowledge

● There is no software patch against unplugging it
● Electronics “patches”:

– Wireless power
– Integrated battery

● Are there any attacks against a well-designed
electronics system?

 4

Today’s target

● We usually focus on getting control of the CPU
● But the CPU only does what the memory tells it

to do
● Control memory → control CPU → do big hack

 5

Paged memory

● Linear model
● OS sets up virtual address space for process

– Maps physical RAM addresses to virtual ones
– Hardware transparently handles this; no special userspace code

required
● Pages are blocks of memory

– Map to some block of physical memory
– Read, Write, eXecute flags

 6

Source demo

● [nano demo.c]
– Runs the [date] command, which prints the date
– Copies text to new_text
– Prints new_text
– Reads a line into buf
– Prints another predermined string
– Prints text from buf
– Also has the dead function that isn’t called by the code

 7

Compiled demo
● [make demo]

– “the ‘gets’ function is dangerous and should never be used”
– It just reads a line of text, how bad can it be?

● [readelf -S demo]
– Flags:

● All sections are readable (kinda useless otherwise)
● A: allocated on program load (otherwise just metadata)
● W: writeable
● X: executable

– .text: where machine code goes (NOT TEXT DATA!!!)
– .rodata: read-only data
– .data: read-write data
– .bss: zeroed read-write data (only size given, not contents)
– .symtab and .dynsym: symbols (names and addresses of functions and variables)

 8

Compiled demo: reading stuff

● [strings demo] gives you strings in demo
● [nm demo] gives you symbols in demo
● [objdump -D demo -M intel] tries to turn everything (data

or code) into assembler (disassembling), and prints it out
– Using -d instead just targets the executable sections
– [objdump --disassemble=bar] will disassemble only the

symbol main

 9

Hack demo

● Program is boring
– Let’s hack it

● [xxd -p hax]
– Bunch of As and some random-looking bytes

● [cat hax - | ./demo]
– Types the contents of hax, then lets us interact as normal
– Prints out weird text
– And it’s is now a shell???

 10

What?

● What?

 11

What?

● Strace shows what the program asks the kernel to do
for it (system calls)
– File I/O
– Start processes
– Other stuff

● [cat hax - | strace ./demo]
– Why is the process asking to be turned into a shell?

 12

My analogy is definitely really clever and not just an
excuse to hit things with a hammer

● This is how the programmer feels when the light
turns off

● Or how the circuit designer feels when you
whack the PCB with a hammer

● We are missing some lower-level understanding

 13

Assembly refresher

● jmp: jumps to some point in memory
● call: jumps to some point in memory, can come back with

ret
● mov: sets some memory or register value
● lea: sets a register to the address of the rhs
● All other instructions are either obvious (add, xor) or

easily googlable

 14

Lifetimes

● Memory in modern processes is in 3 groups
– Static: allocated by loader, deallocated by reaper
– Heap: allocated by malloc, deallocated by free
– Stack: allocated by push, deallocated by pop

● What’s the difference?

 15

Static
● There for the entire life of the program

– Being allocated at the start costs basically no extra time
– The .bss, .rodata and .data sections set this up

● This is where you put your code and global variables
– You don’t want those suddenly disappearing
– You can’t allocate code segments without any code!

● Can’t be allocated/deallocated
– All functions have to agree on what memory is theirs

● Remember the “no mutable global variables” thing?
– Must allocate the maximum you will ever need, which is inefficient
– Technically abuse of mmap can, but that’s another story

 16

Heap

● The malloc and free functions control this
– Datastructures used to control this can be messed with, but that’s another talk

● This is where you put data of unknown size, or memory that needs only
needs to exist for some time

● Heap allocation has to go ask the kernel for memory during run time, so
slow
– Modern heap allocators do clever things to make this faster, but still generally

quite slow
● We don’t use this in the demo program, so it can’t be the problem

 17

Stack
● CPU Instructions `push` and `pop` control this
● [board demo]

– Stack grows down (annoyingly)
– Stack frames are placed after return pointer
– FILO

● Keeps track of return pointer
– How ret finds which call to return to

● Also can be used for local variable allocation [demo]
– Very easy cleanup of variables, much faster than malloc

● Putting two very different types of data together
– Hmm, sounds like hax

 18

Sounds like hax

● [ret2func board demo]
● Gets writes past the end
● Easy in theory, need some tools for real-world

 19

Finding the offset
● Gdb + gef

– Can do with just base gdb, but effort
– https://github.com/hugsy/gef

● How do we find this offset?
– Trial and error (spam As until segfault and wiggle around a bit)
– Clever maths (debruijn sequence)

● https://github.com/c3-ctf/debruijn/releases/tag/v0.0.1
● [debruijn demo into gdb]

– [debruijn 2 AA]
– ‘r’ starts program
– Typing in our sequence segfaults
– ‘i f’ prints current frame info
– ‘x/s $rsp’ prints the string at the stack pointer
– [debruijn 2 AA IA] gives us the offset 16 (only need n letters)

https://github.com/hugsy/gef
https://github.com/c3-ctf/debruijn/releases/tag/v0.0.1

 20

Building the payload
● I spent years trying to build payloads using python, JS and even PERL!
● nasm is best tool I’ve found

– Can easily type in addresses, and it handles endianness
– Can handle instructions
– Available on basically anything that can be called a computer

● Non-assembly syntax:
– db: byte, dw: 16-bit int, dd: 32-bit int, dq: 64-bit int
– times <n> <instruction>: repeats <instruction> n times
– [BITS <n>]: tells nasm to assemble for an <n> bit computer
– We’re on amd64, so use [BITS 64] and dq for addresses

● Use nm or cutter to find interesting functions to return to
● Let’s go! [ret2func demo]

 21

But where’s the shell :(

● We did some cool stuff, but we haven’t loaded a shell yet
● Where else can we return?

– We can “return” to any point in a function!
– We can even “return” outside of a function! (as long as it’s executable)
– gef’s vmmap shows executable segments:
– The stack is readable, writable AND executable!!!

● [nano hax.S]
– Code looks weird, you have to write it to work anywhere

 22

Leaving the 90s

● This was really cool back in the 90s
● Made the internet unusable

– Haha funny dialup hax
– Worms
– Mostly just random destruction
– Sometimes not just for lulz

 23

The war begins!

● W^X
– Why the hell can you execute the stack? actually some good reasons

– Stop executing the stack!
● Now we can only crash the program, right?

– I’m giving this talk, so guess the answer...

 24

ROP
● Return Oriented Programming

– “ret” just jumps to the next item on the stack
– Find “gadgets” that do useful things, followed by a “ret”

● pop <register> allows us to set registers!
– Chain them!

● ROPgadget helps find useful things
– Can even build whole ROP chains, but usually overly complicated

● For more advanced binaries, you want cutter
– Great for reverse engineering and binary patching
– https://github.com/rizinorg/cutter/releases

● [demo rop.S]
– Cutter gives the address of all strings in the binary
– Use the “system” function (ret2libc)

https://github.com/rizinorg/cutter/releases

 25

The war continues!

● The attacker is using the addresses of important things to
do bad stuff

● If we randomised those addresses, it would make their lives
harder!

● This is called Address Space Layout Randomisation (ASLR)
● ASLR is enabled kernel-wide on Linux

– So that’s why we can’t just hard-code a stack address

 26

There’s a lot more

● This only scratches the surface of what memory
corruption and binary exploitation can do:
– LD_PRELOAD and linker fun
– Heap attacks (use-after-free, heap smashing)
– Spooky hardware attacks

● There’s also a lot more theory behind this

 27

Bypassing ASLR
● Statically linked libraries are all in the same section
● Relative addresses in the same section are constant

– If you find one address in a section, you can get them all
● Most programs are not position-independent code

– If you have enough gadgets in the non PIC section, you don’t care about ASLR
– To interface with the PIC parts (such as so/dll files), just jump to the PLT, which will redirect you to the

main function
● If not enough is in the PLT, or it’s a position-independent executable, then you need to be

able to read arbitrary bits of RAM
– This means you need 2 vulns instead of one

● Failing all of this, you have to brute force the offset, which is noisy and slow

 28

Stack cookies

● You’re overwriting the stack
● So check if the stack has been overwritten
● Random number stored in a register, check

before each ‘ret’
● Extra memory read after each function is slow

– Sometimes only done on “dangerous” functions

 29

Haha good luck

● You need to either:
– Be able to skip over the stack cookie without overwriting it with ‘A’s
– Read the stack cookie, which requires another vuln
– Brute force the cookie

● 32-bit systems have only 24 non-zero bits of stack cookie, as the first byte
is 0 to protect against string functions
– Can be reasonable to brute force all 16 million possible values
– Not for 64 bit though!

● Failing this, and assuming you can’t brute force it, you’re basically stuck

 30

However, not fixed

● Optional security isn’t secure
● Other related exploits that can’t be patched in

this way
● Old software still in use that isn’t secure

 31

Bounds checking

● Just bounds check
● It’s really easy
● It’s often a single register comparison, and so has no significant overhead
● #define _GLIBCXX_DEBUG or #define _GLIBCXX_ASSERTIONS

– Slower, but enforces proper bounds checks with C++
● #define FORTIFY_SOURCE 1

– Should basically always be on
● Or use a cringe language like Rust

 32

CTF challenges & extra resources

● The pwn challenges are of this form
● LiveOverflow on youtube has a great series

– It’s what got me started
– https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUq

wRTjxglIswKp9mpkfPNfHkzyeN
● Message me on Discord
● Ask me a question IRL!
● Just practice a lot :)

https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://www.youtube.com/watch?v=iyAyN3GFM7A&list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

