

Authentication

 2

3 parts to this talk

● How to work out who a user is
● How to remember who a user is
● Attacks on systems that fail to do this properly

 3

Principle of least privilege

● Doesn’t matter how good security is if users can do
anything

● “Do not allow users to do anything they do not
explicitly need to do”

● Two methods for this:
– Whitelist: secure but difficult to maintain
– Blacklist: insecure but easy to maintain

 4

Who are you?

 5

Plaintext password

● Just save it to a file
● User is authenticated if they send you the same

password

USER PASSWORD

admin secret

clive passwordpassword123

 6

Plaintext password NO BAD

● bad
● BAD
● NOOOOOOOOO BAD

 7

Plaintext password NO BAD

● bad
● BAD
● NOOOOOOOOO BAD

BAD BAD BAD BAD

 8

Plaintext password

● Why bad?
● Timing attacks
● File system read immediately leaks all passwords
● Mess up and leak them yourself

– Accidentally commit them to git repo
– Bell labs emailing all passwords on a system to the entire internet

● Encrypted plain passwords are pretty much just as bad, so don’t do
that either

 9

Hashed password

● Probably most common
● Receive the password
● Hash it
● Compare against DB

USER PASSWORD

admin 2bb80d537b1da3e38bd30361aa855686bde0eacd7162fef6a
25fe97bf527a25b

clive 17fef9e04fcdd058d06bf29988884f920db31d57364e04fbf159
d27c5f924f11

 10

Hashed password

● Most hash functions are designed to be fast
● Therefore passwords are easy to brute force
● Insecure hash functions allow you to cheat
● Rainbow tables are easy to compile

– Big lists of known hashes for common passwords

 11

Hashed password

● Often weak hashes can literally be googled

 12

Manually Salted + Hashed passwords

● Append a random string to a password (to stop
length-extension attacks)

● Store the random string and hash in the DB

USER PASSWORD SALT

admin 5a66dcc4d277152078adabbd016
bade3b2bac6b92f2ce035b4ecf6b0
4a6c9d62

63862bf5f342f2d6429070c30559b6
57

clive a72e9fed631aa759b81654dd189e
443b47075db06dd514a3c4335aa
0a4218bda

32cd31aa9c3bbad7bb47b716b283
6231

 13

Manually Salted + Hashed passwords

● This is the first acceptable method
● Prone to mistakes
● Still pretty easy to brute force, but needs effort

 14

Secure password hash

● Use a prebuilt system such as scrypt, argon2,
bcrypt (if you have to), PBKDF2 (as a last resort)

● It is designed to be slow, so harder to brute force
● It has salt processing built in, so easier to use
● Often comes built-in, so easier to use

 15

Salted + peppered password hash

● For when you really care (which should be always)
● Mix the passwords with a static key kept outside DB

– Can be prepended/appended to salt
– Can be encrypted
– Doesn’t really matter

● Requires attacker to have more than DB access
● AKA “secret salt”, as pepper can mean other things

 16

Password storage conclusion

● Setup
– Create static pepper, and store it somewhere else (like a simple text file)

● When creating password:
– Salt password
– Pepper password
– Hash password
– Store hash + salt, throw away original password
– Don’t store pepper in DB!!!

 17

Password storage conclusion

● To check password:
– Read hash and salt from database
– Load pepper from other location
– Run the same method used to create the hash on the provided

password (salt, pepper, hash)
– Compare the results

● That’s as good as you can reasonably get with just
passwords

 18

Extra authentication

● Sometimes you want more security than just a
password
– High traffic
– Make people feel safe
– Just really private data

● In that case, you have two main extra options

 19

Digital signatures

● Users are given magic numbers
● They use maths to make these magic numbers to sign

things
● More explanation to come in crypto talk
● Theoretically a lot more secure
● But users have to save these somewhere, which just

moves the problem to somewhere else

 20

2FA

● Opt-in for pretty much everything now
● Requires an app/text message/secure hardware widget thing
● Significantly harder to cheese
● Can be bypassed by:

– Social engineering to steal phone number (common)
– Stealing the authentication device
– Replay attacks

 21

OAUTH

● Get someone else to manage passwords for you
● Can be difficult to properly set up
● Puts complete dependence on another service

(usually google)
● Frequently subverted to get personal information

from users

 22

Who are you again?

 23

Session cookies

● This is the best way of doing it
● When a user successfully logs in

– Generate a secure random value (at least 16 bytes of cryptographically random bytes),
and set it as a cookie

– Store the token and the username somewhere (a python dict, redis key/value, etc.)
– MAKE SURE TO SET HTTPONLY!!!

● To check, simply read the cookie, and set them as whatever user the map has in
it

● Very hard to attack if done properly
● Often built-in to the language (PHP’s $_SESSION)

 24

JWTs (and equivalents)

● When a user logs in, securely sign the username, and set it as a
cookie

● To check, first check the signature, then load the value
● Ideally is just as good

– Even slight mistakes in verification/signing makes massive difference
– Leak of signing key is bad
– If not encrypted, can leak internal server information to user
– Personally don’t like it

 25

Rigorous checking

● Checking the user should be able to access what they’re asking for
● Have a system in place, some ideas:

– Check to see if the URL path starts with /admin/…, and if it does, stop anyone but admins
accessing it, so anything there is protected by default

– Always start with an authentication check
– Require any endpoint to explicitly state it’s authentication requirements when registered

● Whenever you update something, make sure that no new powers have been given
to users who shouldn’t have them

● Repeatedly audit (pentest/redteam/whatever) your endpoints
● EXERCISE THE PRINCIPLE OF LEAST PRIVILEGE

 26

Attacks

 27

Cracking hashes

● Hashcat:
– Uses GPU and is faster, but might not work if you don’t have a gpu
– hashcat -m <alg> <hash> <wordlist>
– Get <alg> by hashcat --help, <hash> can be a file or the hash itself
– For the wordlist, generally /usr/share/wordlists/rockyou.txt is good

● (run sudo gunzip /usr/share/wordlists/rockyou.txt.gz on kali to generate it)

– hashcat 0 5d41402abc4b2a76b9719d911017c592
– Can specify wordlist with --wordlist

 28

Cracking hashes

● John
– Supports more formats and is portable, but slower
– john --show --format=<alg> <file of hashes>
– Get <alg> by googling, but sometimes john can just guess the format
– echo 5d41402abc4b2a76b9719d911017c592 > /tmp/hash
– john --show --format=raw-md5 /tmp/hash
– Can also add a wordlist with –wordlist=<file> if built-in list doesn’t find

it

 29

Replay attacks

● Very, VERY common
● Attacker spoofs trusted site
● User types in password/2fa token/signature
● Attacker uses this to authenticate as user

 30

Replay attacks

● Probably the most common attack in the wild
● Can be fixed at a protocol level

– SSH, TLS, etc

● Shared private data (such as email confirmation)
can be used

● Educating users to check the actual URL

 31

Broken access control

● Forgetting to check, or not properly checking,
who someone is

● Very, very common in the real-world
● Often very simple
● Common on websites with internal REST APIs

 32

Broken access control

● Common format:
– Page is properly authenticated, but javascript somewhere on page asks API for data
– API doesn’t check permissions, and trusts whatever is handed to it
– Attacker just submits the request without accessing the page

● For instance (real-world but fixed):
– Timetable page is authenticated, but fetches timetable from unauthenticated endpoint, along the lines of

“/api/timetable?user=harlan”
– Attacker can just use “/api/timetable?user=tom” to get different timetable

● Often just leaks information, but can somethimes be used to modify the user’s credentials:
– Password reset form has a hidden text-box set by the server containing the username of the current user
– Setting this to a different username allows the attacker to change another user’s password.

 33

Spraying

● Get a list of users (or just guess)
● Try common passwords
● Chances are, one will work
● Now you’ve logged in

 34

Your turn

● Sharksellers: ctf.cybersoc.cf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

