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3 parts to this talk

● How to work out who a user is
● How to remember who a user is
● Attacks on systems that fail to do this properly
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Principle of least privilege

● Doesn’t matter how good security is if users can do 
anything

● “Do not allow users to do anything they do not 
explicitly need to do”

● Two methods for this:
– Whitelist: secure but difficult to maintain
– Blacklist: insecure but easy to maintain
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Who are you?
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Plaintext password

● Just save it to a file
● User is authenticated if they send you the same 

password

USER PASSWORD

admin secret

clive passwordpassword123
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Plaintext password NO BAD

● bad
● BAD
● NOOOOOOOOO BAD
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Plaintext password NO BAD

● bad
● BAD
● NOOOOOOOOO BAD

BAD BAD BAD BAD
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Plaintext password

● Why bad?
● Timing attacks
● File system read immediately leaks all passwords
● Mess up and leak them yourself

– Accidentally commit them to git repo
– Bell labs emailing all passwords on a system to the entire internet

● Encrypted plain passwords are pretty much just as bad, so don’t do 
that either
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Hashed password

● Probably most common
● Receive the password
● Hash it
● Compare against DB

USER PASSWORD

admin 2bb80d537b1da3e38bd30361aa855686bde0eacd7162fef6a
25fe97bf527a25b

clive 17fef9e04fcdd058d06bf29988884f920db31d57364e04fbf159
d27c5f924f11
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Hashed password

● Most hash functions are designed to be fast
● Therefore passwords are easy to brute force
● Insecure hash functions allow you to cheat
● Rainbow tables are easy to compile

– Big lists of known hashes for common passwords
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Hashed password

● Often weak hashes can literally be googled



  12

Manually Salted + Hashed passwords

● Append a random string to a password (to stop 
length-extension attacks)

● Store the random string and hash in the DB

USER PASSWORD SALT

admin 5a66dcc4d277152078adabbd016
bade3b2bac6b92f2ce035b4ecf6b0
4a6c9d62

63862bf5f342f2d6429070c30559b6
57

clive a72e9fed631aa759b81654dd189e
443b47075db06dd514a3c4335aa
0a4218bda

32cd31aa9c3bbad7bb47b716b283
6231
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Manually Salted + Hashed passwords

● This is the first acceptable method
● Prone to mistakes
● Still pretty easy to brute force, but needs effort
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Secure password hash

● Use a prebuilt system such as scrypt, argon2, 
bcrypt (if you have to), PBKDF2 (as a last resort)

● It is designed to be slow, so harder to brute force
● It has salt processing built in, so easier to use
● Often comes built-in, so easier to use
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Salted + peppered password hash

● For when you really care (which should be always)
● Mix the passwords with a static key kept outside DB

– Can be prepended/appended to salt
– Can be encrypted
– Doesn’t really matter

● Requires attacker to have more than DB access
● AKA “secret salt”, as pepper can mean other things
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Password storage conclusion

● Setup
– Create static pepper, and store it somewhere else (like a simple text file)

● When creating password:
– Salt password
– Pepper password
– Hash password
– Store hash + salt, throw away original password
– Don’t store pepper in DB!!!
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Password storage conclusion

● To check password:
– Read hash and salt from database
– Load pepper from other location
– Run the same method used to create the hash on the provided 

password (salt, pepper, hash)
– Compare the results

● That’s as good as you can reasonably get with just 
passwords
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Extra authentication

● Sometimes you want more security than just a 
password
– High traffic
– Make people feel safe
– Just really private data

● In that case, you have two main extra options
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Digital signatures

● Users are given magic numbers
● They use maths to make these magic numbers to sign 

things
● More explanation to come in crypto talk
● Theoretically a lot more secure
● But users have to save these somewhere, which just 

moves the problem to somewhere else
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2FA

● Opt-in for pretty much everything now
● Requires an app/text message/secure hardware widget thing
● Significantly harder to cheese 
● Can be bypassed by:

– Social engineering to steal phone number (common)
– Stealing the authentication device
– Replay attacks
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OAUTH

● Get someone else to manage passwords for you
● Can be difficult to properly set up
● Puts complete dependence on another service 

(usually google)
● Frequently subverted to get personal information 

from users
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Who are you again?



  23

Session cookies

● This is the best way of doing it
● When a user successfully logs in

– Generate a secure random value (at least 16 bytes of cryptographically random bytes), 
and set it as a cookie

– Store the token and the username somewhere (a python dict, redis key/value, etc.)
– MAKE SURE TO SET HTTPONLY!!!

● To check, simply read the cookie, and set them as whatever user the map has in 
it

● Very hard to attack if done properly
● Often built-in to the language (PHP’s $_SESSION)
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JWTs (and equivalents)

● When a user logs in, securely sign the username, and set it as a 
cookie

● To check, first check the signature, then load the value
● Ideally is just as good

– Even slight mistakes in verification/signing makes massive difference
– Leak of signing key is bad
– If not encrypted, can leak internal server information to user
– Personally don’t like it
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Rigorous checking

● Checking the user should be able to access what they’re asking for
● Have a system in place, some ideas:

– Check to see if the URL path starts with /admin/…, and if it does, stop anyone but admins 
accessing it, so anything there is protected by default

– Always start with an authentication check
– Require any endpoint to explicitly state it’s authentication requirements when registered

● Whenever you update something, make sure that no new powers have been given 
to users who shouldn’t have them

● Repeatedly audit (pentest/redteam/whatever) your endpoints
● EXERCISE THE PRINCIPLE OF LEAST PRIVILEGE
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Attacks
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Cracking hashes

● Hashcat:
– Uses GPU and is faster, but might not work if you don’t have a gpu
– hashcat -m <alg> <hash> <wordlist>
– Get <alg> by hashcat --help, <hash> can be a file or the hash itself
– For the wordlist, generally /usr/share/wordlists/rockyou.txt is good

● (run sudo gunzip /usr/share/wordlists/rockyou.txt.gz on kali to generate it)

– hashcat 0 5d41402abc4b2a76b9719d911017c592
– Can specify wordlist with --wordlist 
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Cracking hashes

● John
– Supports more formats and is portable, but slower
– john --show --format=<alg> <file of hashes>
– Get <alg> by googling, but sometimes john can just guess the format
– echo 5d41402abc4b2a76b9719d911017c592 > /tmp/hash
– john --show --format=raw-md5 /tmp/hash
– Can also add a wordlist with –wordlist=<file> if built-in list doesn’t find 

it
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Replay attacks

● Very, VERY common
● Attacker spoofs trusted site
● User types in password/2fa token/signature
● Attacker uses this to authenticate as user
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Replay attacks

● Probably the most common attack in the wild
● Can be fixed at a protocol level

– SSH, TLS, etc

● Shared private data (such as email confirmation) 
can be used

● Educating users to check the actual URL
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Broken access control

● Forgetting to check, or not properly checking, 
who someone is

● Very, very common in the real-world
● Often very simple
● Common on websites with internal REST APIs
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Broken access control

● Common format:
– Page is properly authenticated, but javascript somewhere on page asks API for data
– API doesn’t check permissions, and trusts whatever is handed to it
– Attacker just submits the request without accessing the page

● For instance (real-world but fixed):
– Timetable page is authenticated, but fetches timetable from unauthenticated endpoint, along the lines of 

“/api/timetable?user=harlan”
– Attacker can just use “/api/timetable?user=tom” to get different timetable

● Often just leaks information, but can somethimes be used to modify the user’s credentials:
– Password reset form has a hidden text-box set by the server containing the username of the current user
– Setting this to a different username allows the attacker to change another user’s password.
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Spraying

● Get a list of users (or just guess)
● Try common passwords
● Chances are, one will work
● Now you’ve logged in
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Your turn

● Sharksellers: ctf.cybersoc.cf
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