
Cracking and reverse-engineering

2

Reverse engineering

● Work out what programs do, and how
● Many applications

– Debugging is sort of “reverse-engineering” a bug
– Analysing code flow to find “features” (Technical Minecraft)
– Finding ways of disabling malware
– Extracting the exploit used by worm to patch it

● Very attractive skill to employers

3

Binary Patching / Cracking

● Modifying a program without the source code
● Many uses

– Extract useful parts without rewriting from scratch
– Fix bugs on unmaintained software
– Add features to software (i.e. modding games)
– Can be used in software piracy

● Be careful with terminology
– Cracking often means DRM bypass for piracy
– “Binary patching” is the more employable term

4

DANGER WARNING PLEASE NO BREAK LAW!!!

● DON’T crack DRM-infested programs
– Digital Rights Management
– Bypassing DRM (even without sharing): illegal in the US, definitely dodgy in UK
– Sharing cracked programs: violates copyright law everywhere

● MAYBE examine legit programs you have rights to use
– Potential copyright issues if you write something that competes with owner (programs, manuals, etc)
– Gives you useful practice
– Useful insight into a PREVIOUSLY KNOWN co-operative and appreciative target

● I’ve been in this situation before
● DO examine your own programs

– Can teach you a lot about optimisation and low-level code
– Teaches you what certain assembly blocks mean

5

Strings

● Easy to recover plaintext data
– Grep for flags!

● You can use `strings` to get strings from a binary
– Grep through the result, or just manually search

● Anything that can display text works
– I have seen this solved with notepad

6

Strings demo

● [strings trivial]

7

Memory dump

● Don’t always just store flag in plaintext
● Reverse engineering and patching is hard
● Grepping for flags is easy

– Set a breakpoint where the flag is stored in plaintext
– Search for the flag, or print it if you know where it is

8

Memory dump demo

● [cutter demo]
● [gdb demo]

– `search-pattern` with gef
– `dump memory` with base gdb

9

Reverse engineering

● Sometimes it’s a bit more complicated
– Data not stored in plaintext
– You want an entire function, not just some data

● For flags/keys
– It must check the data somehow
– The secret is in the code

10

Reverse engineering rules

● Rule 1: If you don’t understand it, it’s probably not important
– No-one cares what FYL2XP1 does
– What the hell even is PHMINPOSUM?
– Just look at jumps, calls and movs

● Rule 2: Avoid looking at assembly whenever possible
– Assembly is a Lovecraftian aberration that slowly drives all who lay eyes upon it to insanity
– Use decompilation where possible
– Look at control flow graphs

● Rule 3: focus on the important parts
– Modern software has tens of thousands of functions
– Most of them are never used
– Most of the rest do things you don’t care about
– Only examine functions you directly need to understand

11

Reverse engineering tools

● Real programmers use objdump -d
– Works for really small software that human brains can comprehend
– Good luck with multi-million instruction binaries

● Some people use Ghidra/IDA pro/binary ninja
● I find Cutter the most useful

– Supports decompilation
– Supports binary patching
– Experimental support for debugging (a bit rubbish)
– A bit dodgy and crashes occasionally
– Looks cool

12

Reverse engineering demo

● [cutter ez]

13

Binary patching – extracting information

● Find the thing you want
● Find the things before it stopping you
● Disable them

– NOP: replace the instruction with no-ops
– Reverse jump: invert the condition
– Conditional unconditional jumps: don’t check the condition→

14

Binary patching - demo

● [demo print flag] →
● [ez say win]→

15

Advanced binary patching

● Sometimes you don’t have everything
– Program only loads flag in chunks

● If the program checks character by character, you can
easily brute force
– Theoretically timing attacks work (but take ages!)
– Patching is easier!

● Standard approach: get the program to exit with the index
of first incorrect character

16

Advanced binary patching - demo

● [cutter ez]

17

Reversing checkers

● In general you can’t work out what input a program accepts
– Literally a restatement of the halting problem

● For easy things, we can do it by hand
● For harder things, we use software (usually Z3)
● Z3 can be controlled by most languages, but generally

people use Python
● Won’t give full docs of Z3 here (google it!)

18

Reversing checkers - demo

● [cutter harder]
● [nano harder-hax.py]
● [python3 harder-hax.py]

19

PLEASE DO CTF
CHALLENGES :(((

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

