
Web attacks:
LFI, SSTI, SSRF, and Prototype Pollution

cybersoc.cf

Disclaimer
Anything you learn in these sessions is FOR EDUCATIONAL PURPOSES ONLY and we are
NOT RESPONSIBLE FOR YOUR ACTIONS! The tools we will show you aren't illegal but
using them against a network you don't own or where you don't have the explicit
written permission to use them is HIGHLY ILLEGAL and almost always against the
terms of service.
DO NOT UNDER ANY CIRCUMSTANCES USE THE TOOLS AND TECHNIQUES SHOWN
AGAINST ANY UNIVERSITY OWNED PRODUCT, WEBSITE OR NETWORK,YOU WILL BE
PUNISHED BY THE DEPARTMENT/UNIVERSITY AND COULD BE PROSECUTED IN SOME
CASES.
There are hundreds of websites where you can practice these techniques in a safe,
legal environment without the risk of causing real damage or facing prosecution.

cybersoc.cf

Local File Inclusion (LFI)
● A common vulnerability found in web servers

that serve files from a directory structure
– Being able to access files outside of the ones the

developer wanted to be accessible (Remote File
Inclusion is when the server accesses remote files)

cybersoc.cf

Path traversal
● Escape the directory by navigating up the file

tree (..)
● Sometimes the path will be filtered

– Use urlencoding
– Include the required path at start (if they force path

to include some substring)

cybersoc.cf

cybersoc.cf

cybersoc.cf

PHP Wrapper URLs
● php://filter

– Used to apply “filter”s to other data, when reading or
writing

● php://input
– Reads the data uploaded with POST request

● expect://
– Read the output of a command (normally disabled)

book.hacktricks.xyz/pentesting-web/file-inclusion#lfi-rfi-using-php-wrappers

https://book.hacktricks.xyz/pentesting-web/file-inclusion#lfi-rfi-using-php-wrappers

cybersoc.cf

php://filter
● Uses php stream filters

– Base64 decode:
php://filter/convert.base64-encode/resource=file

– Rotate 13: php://filter/string.rot13/resource=file
– Zlib deflate: php://filter/convert.zlib-deflate/resource=file.xz

cybersoc.cf

RFI / data URLs
● When using include or require PHP interprets the file as PHP code

– This can be used to execute code on the machine
– Normally this doesn’t work as it requires a default option to be

changed (allow_url_includes=1)

cybersoc.cf

Log file injection
● When you can include files but cannot use data urls or

remote files it is possible to inject code into log files
– A common method is injecting php code into your User-Agent

● Common locations include:
– /var/log/apache2/access.log
– /var/log/httpd/access.log
– /var/log/nginx/access.log

cybersoc.cf

Server Side Template Injection
(SSTI)

● Templating engine: A server program used to
generate non-static web content
– e.g. Add your username to the text of a site

● When handling user-generated content the
templating engine may be exploitable

github.com/c3-ctf/jinja2pwn

https://github.com/c3-ctf/jinja2pwn

cybersoc.cf

cybersoc.cf

Harlan’s jinja pwn

cybersoc.cf

Server Side Request Forgery
(SSRF)

● When you are able to use the server to send requests to
user-controlled destinations
– Classic example: A website that screenshots another site

● Often non-public services have less security: by accessing
them from the local network will be easier to attack

● The main mitigation for this is filtering the address ranges
that users are allowed to connect to

cybersoc.cf

Getting around IP filtering
● file:///
● http://localhost
● http://lo.cybersoc.cf
● DNS rebind

– If the server checks the resolved IP, you can set up DNS to
respond with a non-local IP for the first request and a local
IP to the second

../../../../../../
http://localhost/
http://lo.cybersoc.cf/

cybersoc.cf

Gitlab when SSRF
● Gitlab is a code sharing platform similar to github

except it is open source and people can host their
own instance

● This year gitlab was found to be vulnerable to 2
different SSRF vulnerabilities

● By using this SSRF to connect to redis (a in memory
database) RCE was possible

cybersoc.cf

Prototype Pollution
● A way of exploiting how javascript works to increase attack surface
● Every object in javascript has a prototype which contains the

functions that can be called on the object. This prototype can be
modified at any time and is global to all objects of the same type.

● This can be used to exploit templating engines such as handlebars
● By adding to the root prototype you can add attributes to every

object in the context

cybersoc.cf

We have reached root
prototype

cybersoc.cf

Lodash
● Lodash is a very popular javascript library (40mil weekly downloads), it

provides functions for doing basic things
● Has had a few prototype pollution CVEs

– CVE-2020-8203: Prototype pollution attack when using _.zipObjectDeep in lodash
before 4.17.20.

– CVE-2019-10744: Versions of lodash lower than 4.17.12 are vulnerable to Prototype
Pollution. The function defaultsDeep could be tricked into adding or modifying
properties of Object.prototype using a constructor payload.

– CVE-2018-16487: A prototype pollution vulnerability was found in lodash <4.17.11
where the functions merge, mergeWith, and defaultsDeep can be tricked into adding
or modifying properties of Object.prototype.

cybersoc.cf

cybersoc.cf

cybersoc.cf

cybersoc.cf

Resources
● Ctf challenges: LoFi, Murky Waters
● Hack Tricks: LFI, SSTI, SSRF, Prototype Pollution
● Tryhackme

– Inclusion
– Archangel
– SSTI

● Hackthebox
– Templated

https://ctf.cybersoc.cf/
https://book.hacktricks.xyz/pentesting-web/file-inclusion
https://book.hacktricks.xyz/pentesting-web/ssti-server-side-template-injection
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery
https://book.hacktricks.xyz/pentesting-web/deserialization/nodejs-proto-prototype-pollution
https://tryhackme.com/room/inclusion
https://tryhackme.com/room/archangel
https://tryhackme.com/room/learnssti
https://app.hackthebox.com/challenges/152

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

